CHAPTER 7. THERMOCHEMISTRY F.Sc Chemistry 1st Year short question

CHAPTER 7.                                 THERMOCHEMISTRY           F.Sc Chemistry 1st Year
Q.1      Define the following terms and give three examples of each.
Ans:  System: The substance which is under experiment or under observation is
called as system. Examples:
(i)         Pb(NO3)2 in decomposition of Pb(NO3)2.
(ii)        Zn and CuSO4 solution, the reaction mixture in the vessel.
(iii)       CaCO3 in thermal decomposition of CaCO3
(b)        Surroundings: Everything around the system which  is  not  a  part  of  system  is called surroundings. For example 
  During the  reaction between Zn and CuSO4  solution vessel  and
air etc are surroundings.
(c)       State function: A  macroscopic  property  of  a  system  which  has  some  definite value  for  initial  and  final  state  and  independent  of  the  path
followed e.g.  (i)  Pressure   (ii)  Temperature   (iii)  Internal energy.
Note: Heat is not a state function.
Q.2      Describe the units of energy.
Ans. Mostly Joule and calorie are used for the measurement of energy.
Calorie: The  amount  of  energy  required  to  raise  the  temperature  of  one gram of water from 14.5oC to 15.5oC is called one calorie.
Joule: It is  SI  unit  of  energy and defined  as energy  expanded  when a force  of  one  Newton  moves  a  body  through  one  meter  in  the direction in which force is applied.
                 Joule  =   Force x distance
                        1J =      1 N x 1 m
Q.3      What are thermochemical reactions?
Ans:  Exothermic reaction: Those  thermochemical  reactions  in  which  heat  is  evolved  as  a result of reaction are called as exothermic reactions.
            C(s) + O2(g)                                        CO2(g)                                 H  =  – 393.7 kJ/mole
                H2(g) + O2(g)             H2O(l)                                               H  =  – 285.5 kJ/mole
            N2 + 3H2(g)                  2NH3(g)                                                  H  =  – 41.6 kJ/mole
 Endothermic reactions: Those  thermochemical  reactions  in  which  heat  is absorbed  as  a
result of reaction are called as endothermic reaction.
            N2 (g) + O2(g                    2NO(g)                   H  =  + 180.51 kJ/mole
            H2O(l)                              H2(g) + O2(g)              H  =  + 285.58 kJ/mole
            H2(g) + I2(g)                      2H I                             H  =  + 52.96 kJ/mole
Q.4     Differentiate  between  internal  energy  and  enthalpy  of  a system? 
Ans:    Internal energy: The total of  all  kinds  of  K.E  and  P.E  of  all  the  particles  of  a
system is called as internal energy. It is denoted by “E’ e.g., kinetic
energy may be in the form of translation, vibrational and rotational
motion  and  potential  energy  is  intermolecular  and  intramolecular
forces of attraction. It is a sate function of system.
            E= K.E + P.E
Enthalpy of the system:
             The  total  heat  contents  of  a  system  and  denoted  by  H.  The
increase in the internal energy of a system plus work done is called
as enthalpy i.e.     H  =  E + PV

Q.5      Define the followings:   
 (i)    Enthalpy of reaction        (ii) Enthalpy of combustion 
Ans: Standard Enthalpy of reaction: The enthalpy changes when no. of moles of reactants as indicated
by the  balanced  chemical  equation  react  completely  together  to
give the products under the standard conditions.
            H2(g) + O2(g)                                            H2O(l)                                      H  =  – 285.5 kJ/m
           N2(g) + O2(g)                                            2NO(g)                                 H  =  + 180.5 kJ/m
Standard Enthalpy of Combustion:
            The enthalpy change when one mole of a substance is completely
burnt in excess of oxygen under standard conditions.
`           C2H5OH(l) + 3O2(g)                     2CO2(g) + 3H2O(l)                      H   =  – 1368 kJ/m
            C(s) + O2(g)                                  CO2(g)                                  H  =  – 393.7 kJ/m
            2Al(s) + O2(g)                                         Al2O3(s)                              H  = – 1675.7 kJ/m
Q.6 Why it is essential to mention the physical states of reactants and products in a thermochemical equation?
Ans. The  heat  of  reaction  depends  upon  the  physical  states  of  the reactants  and  products,  heat  of  reaction  is  different  in  different physical states therefore, while writing a thermochemical equation
it  is  essential  to  mention  the  physical  states  of  the  reactants  and products. E.g
H2(g) + 1/2O2(g)              →   H2O(g)             ΔH = -241.5 KJ mol-1
H2(g) + 1/2O2(g)      →   H2O(l)                Δ H= -285.8 KJ mol-1
Q.7       Differentiate  between  spontaneous  and  non–spontaneous reaction?
Ans.  The  process  which  takes  place  on  its  own  without  any  outside help and  moves from a
non–equilibrium  state  to equilibrium state is  called  spontaneous  or  natural  process.  It is real,  unidirectional and  irreversible  e.g.  water  flows  from  higher  level  to  low  level, reaction between acid and base etc.  There  are  certain  reactions which  need  energy  to  start but once they start they proceed their own for example burning of candle.
  The  process which  does not take place on  its own and  does not occur  in  nature  is  called  as 
non–spontaneous.  It  is  reverse  of  the spontaneous  process  i.e.  pumping  of  water  uphill,  flow  of  heat from colder to hotter region etc.
Q.8   Prove that  change in enthalpy is equal  to heat  of reaction? or prove that   
 Δ H =  qp  ? 
 Ans. We  know  that  enthalpy  is  equal  to  the  internal  energy  plus
product of pressure and volume.
                                              H  =  E + PV
A change in enthalpy of system is written as
                                                Δ H  =  ΔE + Δ(PV)
                                                Δ H  =  ΔE + ΔPV +  PΔV
Since the gas I kept at constant pressure. ΔP= 0
                                          Hence    Δ H  =  ΔE + PΔV   ………eq…1         (for solids & liquids ΔV =0 so, Δ H = ΔE )
 According to first law of the thermodynamics
                                  ΔE  =  q  + w
If w is pressure-volume work done by system, then,      W = - PΔV
                                             ΔE  =  q   - PΔV      
Putting this value of   ΔE in Equation no..1
                                           Δ H  =  q   - PΔV + PΔ
                                           Δ H  =  q  
        since the pressure is kept constant, then
                                              Δ H  =  qp
This  shows  that  enthalpy  change  is  equal  to  amount  of  heat absorbed at constant pressure.
Q.9.     Heat  is  evolved  in  exothermic  reactions  and  absorbed  in endothermic relations.
Ans.  When  bond formation  energy  is  greater  than  the  bond  breaking energy  then  the  excess  of  energy  is  evolved  making  the  reaction exothermic.  When  the  bond  breaking  energy  is greater  than  the bond  formation  energy  then  the  difference  of  energy  is  supplied from surrounding making the reaction is endothermic.
Q.10. How  would  you  explain  that  change  in  enthalpy  is  a  state function?
Ans.  As      H  =  E + PV
           E,  P   and  v  are  state  functions  as  they  are  independent  of path  and  depend  only  on  the  initial  and  final  state  of  the  system therefore  enthalpy  of  a  system  is  also  a  state  function  because
enthalpy depends on E,  P and V.
Q11. What  is difference  between heat and  temperature?  Or Write  a  mathematical relationship between these two parameters? 
Ans:  Heat:     The  measure  of  total  energy of  a substance  is  called  heat. It  is property of a body  which flows  from a body at higher temperature  to a body  at  lower  temperature.  It  is  denoted  by  ‘q’.  It  depends  upon  the quantity  of  a substance.  It  is  measured  by  calorimeter.  It  is  not  a  state function.
Temperature:        It  is  measure  of  average K.E  of  the  molecules in the  system.  It  is  denoted  by ‘T’.
 It  is  independent of  the  quantity  of  a substance. It is measured by thermometer. It is a state function.
          Relationship:               q= m x S x Δ T
Q15.     What is enthalpy of neutralization?    or
 Why enthalpy of neutralization of strong acid and base is always -57.4 KJ mol-1 ? 
Ans:  It is the amount of heat evolved or absorbed when one mole of  H+  ions from an acid reacts with one mole  of OH-      from  a base to  form one  mole  of  H2O.  Under standard  conditions  it  is  called  standard
enthalpy of neutralization, and it is denoted by   Δ Hn.
H+    +      OH-                                          H2O              Δ H  =  -57.4 KJ mol 
The heat of neutralization of strong acid or base is always -57.4 KJ mol-1 because strong acid or base is completely ionized  and  when  acid  and base is mixed no bond has to be broken. 

Comments

Popular Posts